Micron Scale Pixel Hybrid Detector for Hard X-rays

Christopher C. Scott, PhD¹
Karim S. Karim, PhD, PEng, MBA^{1,2}

Digital Radiography

Solid-State X-ray Detection

Indirect conversion

Direct conversion

Amorphous Selenium (a-Se) Photoconductor

- Easily processed as a uniform thick layer over large area
- Atomic number (34) sufficient for hard x-ray imaging
- Low dark current & High charge collection efficiency

High Inherent Spatial Resolution, High Absorption for **Diagnostic X-rays**

→ Low noise, Small Pixel Pitch CMOS

X-ray Attenuation Coefficients for a-Se

X-ray Interaction Energy Deposition in a-Se

35 keV

$$p_{pe} = 0.866$$
 $p_{K_{\alpha}} = 0.111$
 $p_{K_{\beta}} = 0.018$
 $p_{C} = 0.005$

Weighting Factors

Cascaded Systems Theory

Detective Quantum Efficiency (DQE)

X-ray Interaction MTF for a-Se

Objective

Develop hybrid a-Se/CMOS detectors to achieve a unique combination of high spatial resolution (≤10 µm pixel) and high quantum efficiency for hard x-rays for X-ray diffraction imaging

a-Se Films on ITO-glass by Physical Vapor Deposition

CMOS Readout Integrated Circuit (ROIC)

Deposition of a-Se Films by Thermal Evaporation

Thermal Evaporator for a-Se at G2N Centre, University of Waterloo

CMOS Readout IC

Shadow Mask

Back-end Processing of CMOS ROIC

A micrograph of etched CMOS passivation

A diagram of the a-Se/CMOS detector cross-section

Polyimide Layer Conduction

35 kVp, 250 mAs 1 min. between exposures 5 min. between HV changes)

- Charge build-up at the a-Se/PI -> E-field reduction -> sensitivity loss
- Reversing the detector bias resets the device.

LIBRA Readout IC

- 3T active pixel sensor
- $7.8 \times 7.8 \ \mu m^2$ pixel pitch
- 1000 × 1000 pixel array
- $7.8 \times 7.8 \text{ mm}^2$ imaging area

a-Se Deposition

Au Deposition

Packaging

LIBRA @ University of Waterloo

Microfocus Spectrum Characterization

Tube potential (kV)	60
Filter (mm Al)	3.0
Half-value-layer (mm Al)	1.69
Mean Energy (keV)	34.3
Fluence per Exposure (mm ⁻² R ⁻¹)	1.26 × 10 ⁸

9 µm spot size

Slanted-Edge Technique

Edge image

LIBRA Spatial Resolution

50% contrast for 11 µm object

High Resolution Scintillator Comparison: 15 μm GADOX 9 μm pixel FWHM = 27 μm Larsson et al., Scientific Reports 6, 2016

LIBRA DQE

Best reported to date:

15 μm GADOX 9 μm pixel QE = 0.13

Larsson et al., Scientific Reports 6, 2016

LIBRA @ ANL APS Beamline 1-BM

LIBRA Responsivity @ 21 keV and 63 keV

LIBRA Spatial Resolution @ 63 keV

JIMA RT RC-05 Transmission Bar Target @ 21 keV

JIMA RT RC-05 Image _21keV_100fr avg_250ms Tint

50 µm Pinhole Lag @ 63 keV

Scanning Pin Hole _ 63 KeV_ Scan Rate = 25.6 pix/sec

Conclusions

 The a-Se/CMOS prototypes demonstrate a remarkable combination of high spatial resolution and high quantum efficiency for hard x-rays

Factor of 3x DQE improvement despite being relatively unoptimized

Acknowledgements

Michael Farrier

Farrier Microengineering LLC, 3798 N M-75, Boyne City, Michigan, 49712, USA

Antonino Miceli and Peter Kenesei

X-ray Science Division Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, United States

Thank you

